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Theory of Blood Rheology Based on a 
Statistical Mechanics Treatment of 
Rouleaux, and Comparisons with Data 
M. C. WILLIAMS 
Chemical Engineering Department, University of Alberta; Edmonton, Alberta, T6G 2G6, Canada 

and 

J. S. ROSENBLAlT 
Chemical and Biochemical Engineering Depattment, University of Maryland, Baltimore County, 
Baltimore, Maryland 21228, USA 

and 

D. S. SOANE 
Chemical Engineering Department, University of California, Beeley, California 94720, USA 

A constitutive equation for the rheology of blood is obtained from the view of blood as a suspension 
of rouleaux (erythrocyte aggregates), with the rouleaux idealized as elastic cylinders. Properties depend 
on the distribution of rouleaux lengths, which is related to the state of cell aggregation and characterized 
by a structural distribution function. A kinetic equation is developed to describe the balance of aggre- 
gationldisaggregation phenomena. The result is a structure-dependent Maxwell model for the stress 
tensor, with viscosity and relaxation time linearly related to a structure parameter. Comparisons with 
data are shown and discussed. 

KEY WORDS Blood rheology, blood viscosity, erythrocytes, aggregation, disaggregation. 

INTRODUCTION 

Blood flowing at  shear rates above 10 s - l  is usually Newtonian, with a low viscosity 
associated with complete dispersal of erythrocytes. At lower shear rates, cell ag- 
gregates (rouleaux) can survive and lead to enhanced viscosity with non-Newtonian 
and thixotropic behaviour. 1-3 Thus, blood is a “structured fluid” and its rheological 
modeling must incorporate some characterization of its structure and how the 
structure changes. 

In this work, we address the problem of relating macrorheological response to 
the existing microstructure, and also describe the structure in a precise and realistic 
fashion. Previous attempts to interrelate rheology to structure have generally em- 
ployed abstract structure parameters with no tangible ~ignif icance~.~;  one such 
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model for blood5 led to unrealistic artifacts in predictions. Blood viscoelasticity has 
also been represented by a superposition of Maxwell models,6 though connection 
of parameters to microstructure was absent. Here, we define the microstructure 
in terms of the rouleaux length distribution and develop a kinetic equation to 
describe its evolution. The stress tensor is then represented in terms of this dis- 
tribution, so rheological properties embody the rouleau structure in a fundamental 
way. 

ROULEAUX DISTRIBUTION FUNCTION 

The three-dimensional branched structures of red cell aggregates observed at rest 
are too complex to accommodate exactly. However, these are usually very unstable 
in flow and decompose into a basic linear structure of cylindrical geometry (with 
the cells stacked face-to-face in the cylinder). Each rouleau cylinder can be char- 
acterized by the number of cells it contains (n), so the state of aggregation is related 
to cylinder length. The cylinder end-to-end vector q thus has a length proportional 
to nw, where w is cell thickness. Also important to the rheology is the cylinder 
orientation, given by the spatial direction of q. We therefore require a distribution 
function, JI,, that characterizes the assembly of all the rouleaux lengths and ori- 
entations. In general, +, = +,(q, r,, t) where t is time and r, is the position in 
space of a rouleau described by q. 

MICROSTRUCTURAL KINETICS 

Using methods similar to those of Wiegel,’ and restricting attention to incom- 
pressible fluids in a homogeneous flow, one can derive a continuity equation for 
*,: 

when K ,  and L, characterize the mechanisms by which +, is increased or decreased, 
respectively, by mechanical phenomena. The variable r, vanishes in a homogeneous 
flow, so +, = %(q, t )  only. 

Rouleaux reformation kinetics have been treated in a fashion similar to addition 
polymerization kinetics: showing that K ,  is complex in general. However, for 
conditions not far from equilibrium, where all rouleaux are still very long, one can 
show that an approximate expression is valid9: 

Here, +: = equilibrium value of JI, and No = number of cell facedvol in the 
system, a factor proportional to hematocrit (H). This expression has a driving force 
(+; - JI,) similar to those used by other workers dealing with structure build- 
up,lo,ll and independent data1* suggest that Equation (2) is a reasonable low-order 
description. 

Rouleaux break-up kinetics in flow depend on the concentration of each q- 
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1 Stress decay after steady shear at -$ = 0.05 s - ' .  Model (- -) and data (-). 
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FIGURE 2 Stress growth, after rest, following start of steady shear at 4 = 0.05 S K I .  Model (- -) 
and data (-). 
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FIGURE 3 Stress hysteresis, during linear increase of 9 from 0 to 0.12 s - '  during 6.5 s, followed 
by a similar decrease. Model (- -) and data (-). 

rouleau, the local hydrodynamics, and the critical tensile force (FJ  at which the 
adhering cell faces can be separated. Arguments based upon mechanical time scales 
and (again) the long-rouleaux approximation lead to the simplified form9 

where 9 = shear rate and a = dimensionless empirical coefficient that can be 
evaluated from steady state flow data. The linear +dependence in L, leads to 
viscosity predictions that agree well with  experiment^.'^ Because most effects of 
cell surface chemistry and membrane elasticity are embedded in a, we see how 
pathological conditions that lead to abnormal aggregation are reflected in the 
rheology. In this way, rheological measurements can be interpreted for clinical 
diagnostic purposes. 

Combination of Equations (1-3) produces the dynamical equation for +&q, t )  
evolution. That equation can be integrated over configuration space (J (---) dq, 
term-by-term) to give a kinetic equation for N, the total number of aggregated cell 
faceshol. This is transformed to 

dPldt = k(1 - P )  - ( Y I ~ I P  (4) 

where P = N(t) /N,  is the structure factor in this theory. All rheological properties 
depend on P(r). 
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STRESS TENSOR 

The stress T can be viewed as having three components: T = T~~ + ?cell + 7s,. 

Here, represents the plasma contribution, T~~~~ arises from the presence of free 
cells, and T~~ is the structural (aggregated cells) contribution. At high y, T = 
+ T~~~~ because the cells are fully dispersed, but this case is not considered further. 
Instead, we address the low-to-moderate y regime where structure is dominant 
and few isolated cells exist: T = T ~ ,  + T ~ ,  = T ~ , .  This is consistent with our earlier 
use of the long-rouleaux case. 

Using a relationship derived originally for elastic polymer  molecule^,'^ we express 
the stress contribution of one elastic rouleau cylinder as proportional to f,q, where 
F, is the tensile force. For the entire collection of rouleaux, T , ~  = p,(f,q) where pR 
= number of rouleaux/volume and ( ) denotes the average with respect to JI,. 
Furthermore, we assume that rouleaux deform like linear springs: F, = fl(q - qe), 
where q, is the equilibrium value (actually, the value measured at y = 0). Finally, 
it can be shown that pR = wNd2(qe). Various manipulations9 then lead to the 
deviaforic measurable stress, 

The factor containing ( ) is evaluated directly from the evolution equation for JI,, 
by multiplying each term by qq and integrating J (---) dq. The result can be ex- 
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pressed in terms of the Oldroyd upper convected derivative, 6/6t, as [(qq) - (qq)‘] 
= (P/k)G(qq)/Gt. When this is used in Equation (9, together with the relation (qq)‘ 
= ((qf)/3)I and the identity 6I/6t = --$, the result can be rearranged as 

This is simply a structured nonlinear Maxwell model with structural viscosity qsl 
and relaxation time 8 given by 

Both parameters are largest at rest (P = 1) and vanish when cells are fully dispersed 
( P  = 0). 

APPLICATIONS 

For each type of shearing program j(r),  model predictions of stress are obtained 
by simultaneous solution of Equation (4) for P ( j ,  t) and Equation (6) for the T~~ 

components of interest. For comparisons with viscosity data. it is useful to write 
q = qy, + qx where q= is the high-j limit that includes both plasma and dispersed- 
cell contributions. Experiments on steady and transient stress can be described 
using a = 1.2, k = 0.25 S-I,  qO = 0.12 Paes, qx = 0.004 Pa.s.  Direct studies of 
cell aggregation kineticsi5 also give k = 0.25 s-I. From these, and from other 
independent evidence, we estimate R = 7 x N/m; direct measurements have 
not yet been reported. Normal stresses are predicted to be very small, as is indeed 
observed. 

The capability of the model for curve-fitting complex data, such as nonlinear 
transient stresses, should be quite good. A model developed for entangled polymer 

had a similar mathematical structure, and it  was very successful at such 
tasks. Curve-fitting examples for transients at low y are given in Figure 1 (stress 
decay), Figure 2 (stress growth), and Figure 3 (hysteresis). Data” are shown as 
solid lines, representing the average of tests on several human bloods. The dashed 
lines show model predictions made with a, k. qo, and qx values cited above, as 
well as Po = 0.806 to initiate the decay after cessation of shear and P ,  = 0.98 to 
initiate the growth upon beginning shear. The curve-fits are reasonably successful 
at low 9, but deficiencies are expected at high j ,  because the long-rouleaux 
approximation is then less valid. 

The steady-state non-Newtonian prediction is shown in Figure 4 (dashed line), 
using the same parameters as in Figures 1-3. A comparison is also displayed there 
with data on an entirely different blood, obtained by different workers.I3 
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